Linear Algebra II
07/04/2014, Monday, 9:00-12:00

You are NOT allowed to use any type of calculators.

1 (15 pts) Gram-Schmidt process

Consider the vector space P, with the inner product

(r,q) :/0 p(x)q(z) dz.

Apply the Gram-Schmidt process to transform the basis {1, x, 22} into an orthonormal basis.

REQUIRED KNOWLEDGE: inner product, Gram-Schmidt process

SOLUTION:

To apply the Gram-Schmidt process, we first note that
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By applying the Gram-Schmidt process, we obtain:
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2 (748=15 pts) Cayley-Hamilton theorem

(a) Consider the matrix

1 2
el
Find real numbers a and b such that (M — aI)(M — bI) = 0.
(b) Consider the matrix
1 1
=l

Find real numbers a and b such that (M — al)(M —bI) = 0.

REQUIRED KNOWLEDGE: Cayley-Hamilton theorem

SOLUTION:

(2a): The characteristic polynomial of M can be found as

1—A 2

det()J—M)zdet([ 4 3_

D:(1—)\)(3—)\)—8:)\2—4>\—5:()\+1)()\—5).

Cayley-Hamilton theorem implies that
(M +1I)(M —5I)=0.
As such, one can take a = —1 and b = 5.

(2b): For this case, the characteristic polynomial of M can be found as

1-A 1

det(A — M) = det ({ 1 1-

=(1=X2+1=)— = (A=1—i)(A—1+14).
)\D(l A+1=XN-2242=A-1-09)(A—1+19)

Suppose that a and b are real numbers satisfying
(M —al)(M —bI) = M? — (a+b)M + abl = 0.
From Cayley-Hamilton theorem, we know that
M? —2M +2I =0.
Subtracting the last two, we get
(2—-a—b)M+ (ab—2)I =0.
Since M and [ are linearly independent, we have
a+b=2 and ab=2.

In other words, a and b are the roots of the polynomial 22 — 2z + 2. Since this polynomial has
only complex roots (1 & i), there are no real values a and b such that (M — al)(M —bI) = 0.




3  (3+9+3=15 pts) Singular value decomposition

Consider the matrix

(a) Show that the singular values of M are oy =5 and o9 = 3.
(b) Find a singular value decomposition for M.

(¢) Find the best rank 1 approximation of M.

REQUIRED KNOWLEDGE: singular value decomposition, lower rank approximations.

SOLUTION:
(3a):
Note that
T, |17 8
M*M = {8 171

Then, the characteristic polynomial of MTM can be found as

Py (A) = det ({178 A 178_ )J)

=(A—17)? =8 = (A —25)(A—9).
Then, the eigenvalues of MT M are given by
)\1:25 and )\229

and hence the singular values by
o1 = 5 and 09 = 3.

(3b):

Next, we need to diagonalize M T M in order to obtain the orthogonal matrix V. To do so, we
first compute eigenvectors of M7 M.
For the eigenvalue \; = 25, we have

0= (MTM —25I)x = [_S _2} Ej :

This results in the following eigenvector

For the eigenvalue Ay = 9, we have

0= (MTM — 9@z = :8 8] [”1]

This results, for instance, in the following eigenvector

Hence, we get
-
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Note that the rank of M is equal to the number of nonzero singular values. Thus, r = rank(M) = 2.
By using the formula
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The last column vector of the matrix U can be found by looking at the null space of M7:
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This yields
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Finally, the SVD can be given by:
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(3¢c):
The best rank 1 approximation can be obtained as follows:
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4  (10+5=15 pts) Eigenvalues and singular values

Let A be an n x n matrix.
(a) Let X be a real eigenvalue of A. Show that
on <A <oy
where o1 and o, are the largest and the smallest singular values of A, respectively.

(b) Suppose that A is symmetric. Show that |A| is a singular value of A if A is an eigenvalue of
A.

REQUIRED KNOWLEDGE: eigenvalues and singular values.

SOLUTION:
(4a):
Let (A, z) be an eigenpair of A, that is
Az = Ax.
Let A =UXVT be a singular value decomposition of A. Note that
IUZVTz]p = Al lF.
Note that if @ is an orthogonal matrix ||Qu||r = ||v||r for all v. Then, we have
IUSVTallp = SVT2|p and |lz|r = |V 2||p.

Let y = VTz. Then, we get
IZyllr = Al lyllp-

Further, let y = [yl Yo - yn}T. Then, we have

otyt +o3ys + - +onyn
Vitystun

A =

Since 01 = 09 = -+ > 0y, we get

otyi +otys +-- +ofyn OnYt +OonYs o+ onyn
yitus+o vityit+otun

Consequently, we obtain

(4b):

Note that if X is an eigenvalue of A then A2 is an eigenvalue of A%. Since A is symmetric, we
know that A2 = AT A and its eigenvalues are real. Therefore, |\| is a singular value of A.




5 (10+5=15 pts) Positive definiteness

(a) Consider the function
fla,y) = 2® +y° = 3uy.

Find the stationary points of f and determine whether its stationary points are local mini-
mum/maximum or saddle points.

(b) Let
a —a 0
M= |—a b a
0

where a and b are real numbers. Determine all values of a and b for which M is positive
definite.

REQUIRED KNOWLEDGE: stationary points, positive definiteness.

SOLUTION:

(5a): In order to find the stationary points, we need the partial derivatives:
fs =322 -3y and fy= 3y? — 3.
Then, (Z,7) is a stationary point if and only if

322 —35=0
35° — 3z =0.

This leads to z* = Z, or equivalently Z(z> — 1) = 0. Hence, we have Z = 0 or Z = 1 since
73— 1= (2 —1)(2%> + 7 + 1). Then, the stationary points are (z,%) = (0,0) or (z,7) = (1,1). To
determine the character of these points, we need the second order partial derivatives:

fx:}c = 61'7 fxy = _37 and fyy = 6y

For the stationary point (z,7) = (0,0), we have
i L2 8
H = Y = .
(0,0) {fmy Fuu ©0.0) -3 0
Note that the characteristic polynomial of the Hessian matrix H g g is given by A2 —9. Hence, it

has one positive (A\; = 3) and one negative eigenvalue (Ao = —3). Therefore, H ) is indefinite
and the stationary point (Z,y) = (0,0) is a saddle point.

For the stationary point (Z,7) = (1,1), we have

Hon = {fwy fyy}(m) - [_3 6} '

Note that the characteristic polynomial of the Hessian matrix H(; ) is given by (A — 6)2 — 9.
Hence, it has two positive eigenvalues A\; = 9 and A2 = 3. This means that H, ) is positive
definite. Consequently, stationary point (Z,%) = (1, 1) corresponds to a local minimum.

(5b): A symmetric matrix is positive definite if and only if all its leading principal minors are
positive. Note that the leading principal minors of M are given by:

a —a
det(a), det ([_Z _Z}> =ab—a? and det| |—a b
0

0
a| | = alab—a?)—a® = a*b—2d>.



Then, the matrix M is positive definite if and only if
a>0, ab—a®>>0, and a?b—2a®>0.
This is, however, equivalent to saying that
a>0, b—a>0, and b—2a>0.

Note that the inequality in the middle is implied by the last one. Hence, we can conclude that
the matrix M is positive definite if and only if

a>0 and b> 2a.




6  (2+3+10=15 pts) Jordan canonical form

Consider the matrix

OO O =
OO = O
O~ = =
— = O

(a) Find the eigenvalues of A.
(b) Is A diagonalizable? Why?

(¢) Put A into the Jordan canonical form.

REQUIRED KNOWLEDGE: eigenvalues/vectors, Jordan canonical form, diagonaliza-
tion.

SOLUTION:

(6a): Note that A is upper triangular. As such, the eigenvalues can be read from the diagonal
A12,34 = 1.

(6b): It is diagonalizable if and only if it has 4 linearly independent eigenvectors. To find the
eigenvectors, we need to solve the equation (A — Iz = 0:

00 1 =17 [=
00 1 0f |zl _,
000 1| | '
00 0 0] |y

1 0
0 1
r=al, + 5 0
0 0

This means that we can find at most two linearly independent eigenvectors. Therefore, A is not
diagonalizable.

(6¢): Since there are at most two linearly independent eigenvectors, Jordan canonical form
consists of two blocks of sizes 3 + 1 or 2 + 2. Note that

00 01
2|00 01 3
(A-1)° = 00 0 0 and (A—-1I)°=0.
0 0 0 0
Next, we check if
(A-D*v=z
has a solution where x is an eigenvector. Note that
0 0 0 1] [vn vy 1 0
N2, 0 0 0 1 V2| vl 0 1
A=D" =15 0 0 of [us] = |0| =" |o| 7" |0
0 0 0 0] (v 0 0 0
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This means that
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would generate a cyclic subspace. Thus, we can conclude that Jordan canonical form consists of
two blocks of sizes 3 + 1. Finally, we need to choose an eigenvector that is not linearly dependent

to [1 1 0 O]T. This is achieved, for instance, by the eigenvector

oo o

Then, we have

101 —-1]f1 -1 0 1 1 -1 0 1|1 1 0 O
011 0] 1 0 0 0 |1 0 0 0Jf0 1 1 O
0 0 1 1110 1 0 of |0 10 0f{|0 0 1 O
0 0 0 1110 0 1 0 0 0 1 0/f{0 0 0 1




